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1. Лекция 1
1.1. Основные определения для неориентированных графов

Определение. Неориентированный граф
Неориентированный граф— пара (𝑉 , 𝐸), где 𝑉  — множество вершин, а 𝐸 ⊂ (𝑉 × 𝑉 /∼) ∖ {(𝑢, 𝑢)} —
множество рёбер, где отношение эквивалентности задаётся как (𝑢, 𝑣) ∼ (𝑣, 𝑢).

Определение. Путь
Путь — последовательность 𝑃 = 𝑢0𝑒1𝑢1𝑒2…𝑒𝑘𝑢𝑘, где 𝑒𝑖 = 𝑢{𝑖−1}𝑢𝑖.

Число 𝑘 = 𝑙𝑒𝑛(𝑃) = |𝑃 | называется длиной пути.

Простой путь — путь, посещающий каждую вершину не более одного раза.

Рёберно-простой путь — путь, посещающий каждое ребро не более одного раза.

Циклический путь — путь, у которого 𝑢0 = 𝑢𝑘.

Рассмотрим замкнутый путь (циклический маршрут) в графе:

𝑃 = 𝑢0𝑒1𝑢1𝑒2𝑢2…𝑢{𝑘−1}𝑒𝑘𝑢𝑘,

где 𝑢𝑘 = 𝑢0 (путь начинается и заканчивается в одной вершине).

Циклический сдвиг пути: для любого 0 ≤ 𝑖 ≤ 𝑘 определим сдвинутый путь:

𝑄𝑖 = 𝑢𝑖𝑒{𝑖+1}𝑢{𝑖+1}…𝑒𝑘𝑢𝑘𝑒1𝑢1…𝑒𝑖𝑢𝑖.

Отражение (обратный обход) пути 𝑃  задаётся как:

𝑃 {−1} = 𝑢𝑘𝑒𝑘𝑢{𝑘−1}…𝑒1𝑢0.

Два пути 𝑃  и 𝑃 ′ называются эквивалентными (𝑃 ∼ 𝑃 ′), если:
• 𝑃 ′ является циклическим сдвигом 𝑃 , или
• 𝑃 ′ является отражением 𝑃  (с точностью до циклического сдвига).

Определение. Цикл
Циклом называется класс эквивалентности замкнутых путей относительно ∼, то есть:

Цикл = [𝑃 ]{∼} = {𝑄 | 𝑄 ∼ 𝑃}.

Дополнительно требуется, чтобы в цикле не было повторного прохождения одного и того же ребра в
противоположных направлениях.

Граф без циклов называется ациклическим.

Обозначение: 𝑢 ⇝ 𝑣 означает, что вершины 𝑢 и 𝑣 соединены путём.

Теорема.
В неориентированном графе отношение «связаны путём» является отношением эквивалентности.

Классы эквивалентности этого отношения называются компонентами связности.

Вершины 𝑢 и 𝑣 называются рёберно двусвязными, если существуют два рёберно непересекающихся
пути из 𝑢 в 𝑣.
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Теорема.
Отношение рёберной двусвязности является отношением эквивалентности.

Доказательство:
1. Рефлексивность: возьмём два одинаковых пути из вершины в себя. Они не пересекаются по

рёбрам. (Довольно забавно об этом думать)
2. Симметричность: очевидно.
3. Транзитивность: пусть 𝑢 двусвязана с 𝑣, а 𝑣 — с 𝑤. Рассмотрим 𝑝1 и 𝑝2 — два пути из 𝑢 в 𝑣. Возьмём

𝑤 и будем из неё идти в сторону 𝑣 по путям 𝑞1 и 𝑞2.
1. Если дошли без пересечения с 𝑝1 или 𝑝2 — победа.
2. Если по одному пути пересеклись с 𝑝1, а по другому — с 𝑝2 — победа.
3. Если пришли на один и тот же путь, то от одного из 𝑞1 и 𝑞2 пойдём в сторону 𝑢, а от другого — в

сторону 𝑣. Из второго пойдём из 𝑣 в 𝑢 по второму пути между ними. Победа.

Советуем порисовать для понимания. Тут вполне тривиальное доказательство.

Q.E.D.

Два ребра 𝑎𝑏 и 𝑐𝑑 являются вершинно-двусвязными, если существует два вершинно-
непересекающихся пути, соединяющих их концы.

Точкой сочленения называется вершина, принадлежащая сразу двум классам вершинной
двусвязности.

Мост — ребро, концы которого не являются рёберно двусвязными.

Лемма о рукопажатиях.
Сумма степеней вершин равна удвоенному коичеству вершин

1.2. Основные определения для ориентированных графов
Ориентированный граф — пара (𝑉 , 𝐸), где 𝑉  — множество вершин, 𝐸 ⊂ 𝑉 × 𝑉  — множество дуг.

Определения пути, циклического пути (𝑢0 = 𝑢𝑘) и цикла (класс эквивалентности циклических путей
относительно циклического сдвига) аналогичны неориентированному случаю.

1.3. Связность и пути.

Теорема о количество путей или о матрице смежности..
Возьмем матрицу смежности. Она обозначается 𝐴𝐺 и на позиции 𝑎𝑖𝑗 = {1, есть ребро ij

0, иначе

𝑑𝑖𝑗𝑘 - число путей из 𝑖 в 𝑗, содержащее 𝑘 ребер. Тогда:

𝑑𝑖𝑗𝑘 = (𝐴𝐺)𝐾 [𝑖][𝑗]

Доказательство:
Докажем по индукции:

1) База: 𝑘 = 0 𝐴𝐺)0 = 𝐼  - работает.

𝑘 = 1 𝐴1
𝐺 = 𝐴𝐺 - работает.

2) ИП:Хотим доказать, что:

𝐷𝑛 = 𝐴𝑛
𝑗
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Пусть выполнено для 𝑛 − 1, докажем, что выполнено для 𝑛. Имею:

𝐴𝑘
𝐺 = 𝐴𝑘−1

𝐺 𝐴𝐺

Переобозначим 𝐶 = 𝐴𝐾
𝐺 , 𝐵 = 𝐴𝑘−1

𝐺 , 𝐴 = 𝐴𝐺. Тогда:

𝑐[𝑖][𝑗] = ∑
𝑡

𝑏[𝑖][𝑡]𝑎[𝑡][𝑗]

А теперь концептуально подумаем над этой формулой.

TODO

Q.E.D.
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2. Лекция 2
2.1. Деревья

Определение. Дерево
Дерево — связный неориентированный граф без циклов

Лемма.
𝐺 — дерево, содержащее хотя бы 2 вершины. Тогда ∃ вершина степени 1.

Ее можно усилить до того, что существуют 2 таких вершины. Такие вершины называются висячими
или листами .

Теорема.
𝐺 — граф, содержит 𝑛 вершин.
1. 𝑛 − 1 ребер
2. нет циклов
3. 𝐺 — связный

Если выполнены любые 2 из данных 3, то выполнено и третье

Доказательство этой теоремы очень просто

Теорема.
𝐺 — дерево тогда и только тогда, когда ∀𝑢, 𝑣 : ∃! простой путь 𝑢 ⇝ 𝑣

Доказательство этой теоремы тоже очень просто: стоит лишь рассмотреть от противного.

Утверждение. 𝐺 дерево ⇔ 𝐺 связен и любое ребро мост.

Определение. Подграф
𝐺 - граф. 𝐻  получен удалением из 𝐺 ребер или вершин. 𝐻  называется подграфом 𝐺

Определение. Индуцированный Подграф
𝐺 - граф. 𝐻  получен удалением из 𝐺 вершин. 𝐻  называется индуцированным подграфом 𝐺

Определение. Остовный Подграф
𝐺 - граф. 𝐻  получен удалением из 𝐺 ребер, причем 𝐻  связно. 𝐻  называется остовным подграфом 𝐺

Определение. Остовное дерево
Остовное дерево - остовный граф, который является деревом

Лемма.
Любой связный граф содержит остовное дерево

Определение. Матрица Кирхгофа
Матрица Кирхгофа называется матрица 𝐾𝐺,такая что
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𝑎𝑖𝑗 =
{{
{
{{deg 𝑖, 𝑖 = 𝑗

−1, 𝑖𝑗 ∈ 𝐸
0  иначе

Теорема. Кирхгофа
𝐺 - связный граф. Кол-во остовных деревьев 𝐺 равно 𝐴𝑖𝑗, ∀𝑖, 𝑗

Доказательство:
Лемма 1.

Введем понятие для графа 𝐺 матрицы инцидентов. Пусть у нас 𝑛 вершин и 𝑚 ребер. Возьмем
матрицу из 𝑚 столбцов и 𝑛 строк и для каждого ребра в этой матрице инцидентов поставим 1 в соотв.
строку если ребро соединяет эту вершину с другой и 0 иначе. Назовем ее 𝐼𝑔. Пример:

Возьмем 𝐼𝑔 и 𝐼𝑇
𝑔  и перемножим. Заметим, что получится матрица Кирхгофа, но у нас не того знака

единицы. Возьмем теперь ориентацию графа 𝐺 (любую). Поставим −1 в начало ребра и +1 в конец.
Теперь уже перемножая их получим нашу нужную нам матрицу Кирхгофа.

⃗𝐼𝑛 ∗ ⃗𝐼𝑇
𝑛 = Матрица Киргофа G

Лемма 2.

Давайте выберем любое 𝑛 − 1 ребро. Рассмотрим столбцы ⃗𝐼𝑛, связанные с этими ребрами. Удалим
любую строчку. Останется матрица 𝑛 − 1 на 𝑛 − 1. Назовем ее 𝐵. Если выбранные ребра образуют
остовное дерево, то det 𝐵 = ±1, иначе det 𝐵 = 0.

Доказательство:

Обозначим множество оставшихся рёбер за 𝐸𝑄, а вершину, которую мы вычеркнули, — за 𝑢.

• Если 𝐸𝑄 содержит цикл, то граф, тривиально, не связен. Рассмотрим компоненту связности, не
содержащую 𝑢. В ней сумма столбцов равна нулю, и хорошо. Ну, как хорошо. Вообще 𝐸𝑄 может не
содержать ориентированного цикла, но содержать цикл 𝐺. Так вот, в таком случае нам придётся
взять не сумму соответствующих столбцов, а алгебраическую сумму, где неправильно
направленные рёбра идут с коэффициентом −1. Тогда мы получим-таки наш ноль, то есть
линейная комбинация столбцов будет равна нулю, следовательно определитель нулевой.

• Теперь пусть циклов там нет. Тогда там дерево (нет циклов и 𝑛 − 1 ребро). Оно содержит 2 листа.
Один из них — не 𝑢. Обзовём его 𝑣1. Поскольку мы считаем определок, нам разрешают переставлять
строки и столбцы матрицы: давайте возьмём строку 𝑣1, в ней где-то ровно одна ±1. Переместим
строку на первое место, а ±1 — в первый столбец, после чего забудем о 𝑣1. Оставшаяся часть —
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дерево, в нём есть два листа, один — не 𝑢, возьмём его как 𝑣2. Так сделаем до посинения, получим
нижне-треугольную матрицу с ±1 на диагонали.

Лемма 3. Формула Коши-Бине

Пусть 𝐴 — матрица 𝑟 × 𝑠, 𝐵 — матрица 𝑠 × 𝑟, 𝑠 ≥ 𝑟. Тогда

det(𝐴𝐵) = ∑
1≤𝑖1≤𝑖2≤…≤𝑖𝑟≤𝑠

det 𝐴𝑖1;…;𝑖𝑟 det 𝐵𝑖1;…;𝑖𝑟

Напомню, что 𝐴𝑖1;…;𝑖𝑟  — минор матрицы 𝐴, где выбраны столбцы 𝑖1; …; 𝑖𝑟, а 𝐵𝑖1;…;𝑖𝑟
 — минор 𝐵, где

выбраны строки 𝑖1; …; 𝑖𝑟.

Доказывать формулу мы не будем. Кучерук нам вроде даже ее давала

Наконец доказательство самой теоремы

Вычеркнем строчку с номером 𝑢. Что изменится в матрице Кирхгофа? Удалится строчка и столбец с 𝑢.

А теперь, используя формулу Коши-Бине для подсчета данного минора. Ой смотрим смотрим и
получаем, что количество остовных деревьев в точности равно нашему минору.

Q.E.D.

2.2. Коды Прюфера
Как кодировать деревья?

• Возьмем лист, имеющий мин. номер, выпишем на листик и удалим соотв вершину.

Повторим так много раз. Есть биекция между деревьями и этими массивами
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3. Эйлеровы и Гамильтоновы циклы и пути
3.1. Эйлеровы пути и циклы

Определение. Эйлеров путь(цикл)
Эйлеров путь(цикл) — соответственно путь или цикл, который проходи по каждому ребру 1 раз.

Теорема.

𝐺 - связный граф. Тогда существует эйлеров цикл ⇔ соблюдено усл. таблицы:

Цикл Путь

граф все степени вершин четны не больше 2 вершин имеют неч. степень

ор. граф
количество исходящих и выходящих
ребер четно

левое, кроме 2 вершин у которых
количество входящих и выходящих по
модулю отличается на один

Доказательство:
Идея в правую сторону: вычеркиваем циклы, вычеркиваем, пока мы не распадемся на несколько
компонент, используем индукцию и аккуратно ходим. Случай с путем сводим к поиску цикла.

Идея: в левую сторону: Смотрим на степени и все.

Q.E.D.

Теорема.
𝐺 - связный неориентированный граф, 2𝑘 вершин неч. степени и 𝑘 ≥ 1.

Тогда ребра графа представляют собой обход графа по 𝑘 пересекающимся путям.

Доказательство аналогично доказательству прошлой теоремы

3.2. Гамильтоновы пути и циклы

Определение. Гамильтонов путь
Гамильтонов цикл(путь) — цикл(путь), который проходит по каждой вершине 1 раз.

Теорема. Теорема Хватала
Пусть 𝐺 — связный граф с хотя бы 3 вершинами. Пусть его степени вершин — 𝑑1 ≤ 𝑑2 ≤ 𝑐… ≤ 𝑑𝑛.
Если выполнено условие

𝑑𝑘 ≤ 𝑘 < 𝑛
2

⇒ 𝑑𝑛−𝑘 ≥ 𝑛 − 𝑘

то 𝐺 — гамильтонов.

Доказательство:
Для начала условие

𝑑𝑘 ≤ 𝑘 < 𝑛
2

⇒ 𝑑𝑛−𝑘 ≥ 𝑛 − 𝑘
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назовём (∗).

Итак, пусть 𝐺 — негамильтонов граф, в котором выполнено(∗).

Лемма.
Пусть 𝐺 выполнено (∗), 𝑢𝑣 ∉ 𝐸. Тогда 𝐺 ∪ 𝑢𝑣 также (∗).

Доказательство:
Пусть мы имели 𝑑1 ≤ 𝑑2 ≤ … ≤ 𝑑𝑛 При добавлении ребра 𝑢𝑣 степени вершин 𝑢 и 𝑣 увеличиваются
на 1. После пересортировки последовательности степеней выполняется 𝑑𝑖(𝐺) ≤ 𝑑𝑖(𝐺∪𝑢𝑣) для всех 𝑖.
Поскольку условие (∗) монотонно относительно возрастания степеней, оно сохраняется.

Q.E.D.

Будем доказывать от противного. Предположим, существует негамильтонов граф, удовлетворяющий
(∗).

Выберем такой граф 𝐺 с:
• Наименьшим числом вершин
• Наибольшим числом рёбер среди таких графов

Тогда:

1. 𝐺 не является полным графом (иначе он гамильтонов)
2. Для любого отсутствующего ребра 𝑢𝑣 граф 𝐺 ∪ 𝑢𝑣 гамильтонов
3. Выберем отсутствующее ребро 𝑢𝑣 с максимальной суммой deg(𝑢) + deg(𝑣)

Поскольку 𝐺 ∪ 𝑢𝑣 гамильтонов, в 𝐺 существует гамильтонов путь :

𝑢 = 𝑢1 → 𝑢2 → … → 𝑢𝑛−1 → 𝑢𝑛 = 𝑣

Введём множества:

𝑆 = (𝑖 ∈ [2; 𝑛 − 1] | 𝑢𝑢𝑖 ∈ 𝐸(𝐺))

𝑇 = (𝑖 ∈ [1; 𝑛 − 1] | 𝑢𝑖𝑣 ∈ 𝐸(𝐺))

То есть идейно 𝑆 - все вершины, выходящие из 𝑢, 𝑇  - все вершины, входящие в 𝑣.

Имеем:
• |𝑆| = deg(𝑢)
• |𝑇 | = deg(𝑣)
• 𝑆 ∩ 𝑇 = ∅ (иначе существовал бы гамильтонов цикл в 𝐺:)

𝑢 → 𝑢2 → 𝑢3 → … → 𝑢𝑖−1 → 𝑣 → 𝑢𝑛−1 → 𝑢𝑛−2 → …𝑢𝑖 → 𝑢

Следовательно:

deg(𝑢) + deg(𝑣) = |𝑆| + |𝑇 | ≤ 𝑛 − 1

Отсюда deg 𝑢 + deg 𝑣 <= 𝑛 − 1.

Без ограничения общности пусть deg(𝑢) ≤ deg(𝑣). Тогда:

deg(𝑢) ≤ 𝑛 − 1
2

< 𝑛
2

Положим 𝑘 = deg(𝑢). Тогда:
1. 𝑑𝑘 ≤ 𝑘 (существует 𝑘 вершин со степенью ≤ 𝑘)
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2. По условию (∗): 𝑑𝑛−𝑘 ≥ 𝑛 − 𝑘

Тогда, как выше и сказал, существует вершина 𝑤 ∉ 𝑁(𝑢) со степенью deg(𝑤) ≥ 𝑛 − 𝑘. Но тогда для
ребра 𝑢𝑤 получаем:

deg(𝑢) + deg(𝑤) ≥ 𝑘 + (𝑛 − 𝑘) = 𝑛

что противоречит максимальности выбора ребра 𝑢𝑣. Противоречие

Q.E.D.
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4. Лекция 4.
4.1. Планарные графы

Определение. Укладка графа
Укладкой графа 𝐺 на поверхность называется отображение вершин графа (инъекция) и отображение
ребер в множество непрерывных кривых, где каждое ребро начинается и заканчивается в соотв
вершине, а также не пересекаются

Теорема.
Любой граф можно вложить в ℝ3

Доказательство:
Построим как-то, а потом будем двигать ребра в окрестности пересечения ребер.

Альтернатива: Давайте случайно поставим вершины графа в ℝ3. Проведем все ребра, вероятность что
они пересекутся ноль, откуда можно вложить

Q.E.D.

Определение. Гомоморфные графы
Графы 𝐺1, 𝐺2 называются гомоморфными, если TODO

Лемма.
Граф можно уложить на сфере ⇔ граф можно уложить в ℝ2

Доказательство:
Случайно построим почти биекцию между сферой(почти) и плоскостью примерно так:
• Положим плоскость
• Поставим сферу на плоскость и обозначим у нее северный полюс
• Возьмем любую точку на плоскости и проведем прямую через северный полюс. Она пересечет в

каком-то месте шар.
• Давайте возьмем такое отображение, оно будет почти биективным (у северного полюса не будет

образа)

А если подумать, то теперь мы просто будем строить биекцию(почти) и все - победа. Главное, чтобы
северным полюсом была вершина, через которую не проходит ни одно ребро и ни одна вершина,
чего можно добиться.

Q.E.D.

Мы хотим этого, потому что сфера это компакт.

Теорема Эйлера (или Формула Эйлера).
Пусть в связном планарном графе 𝑉  вершин и 𝐸 рёбер, а при его укладке на плоскости получилось 𝐹
граней. Тогда 𝑉 + 𝐹 − 𝐸 = 2

Доказательство:
Докажем индукцией по количеству вершин и рёбер. Если у нас 1 вершина и 0 рёбер, то грань там
одна.
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• Пусть у нас не 1 вершина. Если наш граф дерево, у него 𝑛 вершин, 𝑛 − 1 ребро и 1 грань. Все
работает.

• Если наш граф не дерево, у нас есть хоть один не-мост. Тогда он лежит в цикле, а значит при
удалении этого ребра у нас уменьшится количество граней на 1. При этом граф останется связным.

Из индукционного предположения: 𝑉 + (𝐹 − 1) − (𝐸 − 1) = 2.

Q.E.D.

Теорема.
𝐾5 нельзя уложить на плоскость

Доказательство:
Предположим противное. Пускай граф 𝐾5 можно уложить на плоскости. Тогда по теореме Эйлера
должно быть выполнено: 𝑉 + 𝐹 − 𝐸 = 2. У 𝐾5 вершин 5, ребер 10. Должно быть 7 граней.

Рассмотрим простой цикл длины 3 в этом графе. Посмотрим на еще одну вершину. Они вчетвером
уже разбили на 4 грани нашу плоскость. Заметим, что добавление пятой вершины добавит еще
минимум 3 грани (иначе будет не сходиться) - проиграли

Q.E.D.

Теорема.
𝐾3,3 нельзя уложить на плоскость

Доказательство:
Предположим противное. Тогда 𝑉 = 6, 𝐸 = 9, 𝐹 = 5. Противоречие строится на счете ребер со
стороны граней. Каждую грань ограничивает 4 ребра (мин. цикл длины 4).

Q.E.D.

На этой идее можно строить много разных оценок

Лемма.
Все компоненты вершинной двусвязности 𝐺 планарны ⇒ 𝐺 планарны

Теорема.
Граф можно уложить в ℝ2 ⇔ 𝐺 не содержит подграфа, гомоморфному 𝐾5 или 𝐾3,3

Доказательство:
В правую сторону очевидно из вышесказанных теорем.

В левую сторону. Пусть 𝐺 не планарен и не содержит. Тут надо много писать. Не хочу писать. Потмо
напшиу TODO

Q.E.D.

Определение. Планарный граф
Планарный граф — граф, вложимый в ℝ2
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5. Лекция 5.
5.1. Раскраски

Определение. Корректная раскраска графа
Пусть 𝐺 - неориентированный граф и отображение 𝑐 : 𝑉 → [1, 𝑘]. При этом выполнено, что ∀ ребра
𝑢𝑣 : 𝑐(𝑢) ≠ 𝑐(𝑣). В таком случае 𝑐 называют корректной раскраской

Определение. 𝑘-colorable или 𝑘-раскрашиваемый.
Пусть 𝐺 - неориентированный граф и у него есть корректная раскраска в 𝑘 цветов.

Теорема.
Граф двудольный тогда и только тогда, когда ∀ цикл четен.

Доказательство:
В правую сторону очевидно.

В левую сторону жадно красим с помощью dfs.

Q.E.D.

Определение. Хроматический многочлен
Хроматический многочлен 𝑝𝐺(𝑡) - функция, которая говорит количеству способов раскрасить граф
в 𝑡 цветов.

Отождествление вершин

𝑝𝐺(𝑡) = 𝑝𝐺(𝑡)|𝑐(𝑢)=𝑐(𝑣) + 𝑝𝐺(𝑡) |𝑐(𝑢)≠𝑐(𝑣) = 𝑝𝐺/𝑢𝑤(𝑡) + 𝑝𝐺∪𝑢𝑣(𝑡)

Очень хорошая формулка

Теорема. О хроматическом многочлене
𝐺 - неориентированный граф 𝑝𝑔(𝑡), 𝑛 вершин, 𝑚 ребер, 𝑘 компонент связности. Тогда:

𝑡𝑛 − 𝑚𝑡𝑛+1 + 𝑝𝑛−2𝑡𝑛−2 − 𝑝𝑛−3𝑡𝑛−3 + … ± 𝑝𝑘𝑡𝑘

Доказательство:
Доказываем по индукции по числу вершин и по числу ребер.

База: 𝑛, 𝑚 = 0 : 𝑝𝐺(𝑡) = 𝑡𝑛

Q.E.D.
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