
Introduction to x86

Ivan Sorokin

2

Computer Model

A real computer is a complicated piece of hardware with many
intricate details. For teaching purposes we will leave out some
unnecessary details. Initially we will discuss a simplified model
suitable for teaching. Later we will refine our model to match real
hardware more closely.

3

Computer Model

In a (highly) simplified model a computer consists of two
components a CPU and RAM

CPU RAMread

write

4

RAM

RAM (Random Access Memory) is a numbered set of cells.

65
#135

68
#134

6C
#137

6F
#138

6C
#136

20
#139

77
#140

6F
#141

… …

Numbered means that each cell has a number assigned to it.

The total number of cells determines the amount of RAM. As of 2016
computers typically have 8GB-32GB of RAM installed.

(TODO) In our model we will assume
that cells are number from 0 to N. This
is not the case in real world, where
valid ranges can be non-continous.

5

RAM

RAM supports two operations: read and write.
● write, given a cell index and a value, changes the content of the

specified cell to the specified value. Cell retain its content till the
next write to the same cell

● read, given a cell index, retrieves the content of the specified cell
The index of a cell is called an address.
A cell can be modified only as a whole e.g. individual bits in a cell can
not be modified independently.

65
#135

68
#134

6C
#137

6F
#138

6C
#136

20
#139

77
#140

6F
#141

……

6

RAM

In our model we will assume cell size to be 1 byte.

(sidenote) In the real world, data between a CPU and RAM is never
transfered in bytes, as the overhead of transfering individual bytes
gets prohibitely large. Modern RAM has a single addressable unit 64
bytes long which is of the same size as a cache line of modern CPUs.
As the CPU maintains an illusion that memory can be byte-
addressable we will ignore this detail for now.

7

CPU

A CPU executes programs.

A CPU keeps an internal number called register IP (instruction
pointer). This register holds the address of the next instruction to be
executed. On each step it reads a byte at address IP and possibly
several following bytes. Each sequence of bytes is called an
instruction and has a meaning assigned. CPU executes the
instruction then add the length of the command to the register IP so
the next instruction will be executed on the next step.

8

CPU

01
#135

C2
#134

89
#137

D3
#138

D8
#136

49
#139

75
#140

F7
#141

…

Step #1 IP=137

01
#135

C2
#134

89
#137

D3
#138

D8
#136

49
#139

75
#140

F7
#141

…

Step #2 IP=139

…

…

01
#135

C2
#134

89
#137

D3
#138

D8
#136

49
#139

75
#140

F7
#141

…

Step #3 IP=140

…

This process repeats billions times a second. Modern CPUs are able to execute
up to 12 billion instructions a second.

9

CPU

For convenience instructions are typically written not
in their memory encoding, but using a human-readable
mnemonics. E.g.

89 C2 mov dx,ax
01 D8 add ax,bx
89 D3 mov bx,dx
49 dec cx
75 F7 jnz mylabel

The language of these mnemonics is called Assembly
Language.

10

CPU

In addition to register IP, x86 CPU has 8 so-called
GPRs (general purpose registers). Their names are:

AX, CX, DX, BX, SP, BP, SI, DI

These registers are 16-bit wide.

A register is a (very fast) memory cell located in a
CPU. Most arithmetic operations operate on GPRs.
GPRs are commonly used to keep intermediate results
of computation.

11

Instruction MOV

The simplest and one of the most commonly used
insturuction on x86 is MOV. MOV has two arguments
source and destination. It copies the value from source
to destination. Destination can be a register and source
can be another register or an immediate value.

 MOV dst, src ; dst = src

B8 05 00 MOV AX, 5 ; AX = 5

B9 0A 00 MOV CX, 10 ; CX = 10

89 C8 MOV AX, CX ; AX = CX

89 D0 MOV AX, DX ; AX = DX

89 CA MOV DX, CX ; DX = CX

12

Instruction MOV

MOV can be used to move values to/from memory.
Brackets are used to refer to memory location.

; read 10th memory cell to register AX

A1 0A 00 MOV AX, [10]

; read the memory cell with index BX to AX

8B 07 MOV AX, [BX]

; write AX to the memory cell with index BX

89 07 MOV [BX], AX

13

Endian

MOV AX, [136]

What value will be stored in AX?
● 43628 (0xAA6C) — little endian (x86)
● 27818 (0x6CAA) — big endian

65
#135

68
#134

AA
#137

6F
#138

6C
#136

20
#139

77
#140

6F
#141

… …

14

8-bit memory operations

One can read a single byte of memory by using 8-bit
registers (AL, AH, BL, BH, CL, CH, DL, DH):

MOV AL, [136]

108 (0x6C) will be stored in AL.

65
#135

68
#134

AA
#137

6F
#138

6C
#136

20
#139

77
#140

6F
#141

… …

15

Registers 16-bit

8 bit 8 bit

16 bit

SP

BP

DI

SI

AX
ALAH

BX
BLBH

DX
DLDH

CX
CLCH

16 bit

15 … 07 … 015 … 8

16

Instruction MOV

Not all combinations of sources and distinations are
allowed. For example a single MOV instruction can not
move data from memory to memory.

$ cat 1.asm

mov [ax], [bx]

$ nasm 1.asm

1.asm:1: error: invalid combination of opcode
and operands

17

Instruction MOV

A set of valid combinations of sources and destinations
was expanding over time. On modern CPUs it includes:

MOV reg, reg

MOV reg, imm

MOV reg, [imm]

MOV reg, [reg]

MOV [reg], reg

MOV [reg], imm

MOV [imm], reg

MOV [imm], imm

18

Basic Arithmetic Instructions

A set of basic arithmetic instructions includes
instructions: ADD, SUB, AND, OR, XOR

; ADD writes to the destination the sum of the

; source and the destination

01 C8 ADD AX, CX ; AX = AX + CX

; SUB writes the difference, ditto AND, OR, XOR

29 C8 SUB AX, CX ; AX = AX - CX

21 C8 AND AX, CX ; AX = AX & CX

09 C8 OR AX, CX ; AX = AX | CX

31 C8 XOR AX, CX ; AX = AX ^ CX

19

Basic Arithmetic Instructions

ADD, SUB, AND, OR, XOR supports the same
source/destination combinations as MOV:

21 D8 AND AX, BX

83 E0 05 AND AX, 5

23 06 05 00 AND AX, [5]

23 07 AND AX, [BX]

21 07 AND [BX], AX

20

INC, DEC

INC (increment), DEC (decrement) have only one
argument:

40 INC AX

FE 07 INC byte [BX]

FF 07 INC word [BX]

48 DEC AX

21

NEG, NOT

NEG (negate), NOT (bit-wise not):

F7 D8 NEG AX

F6 1F NEG byte [BX]

F7 1F NEG word [BX]

F7 D0 NOT AX

22

MUL, DIV

The format of MUL and DIV instructions differs from the
one of other arithmetic instructions. MUL has only one
argument. It multiply AX by its argument and write the
result to a pair DX:AX, where DX is high part and AX low
part.

 MUL src ; DX:AX = AX * src

F7 E3 MUL BX ; DX:AX = AX * BX

F7 27 MUL WORD [BX] ; DX:AX = AX * [BX]

There are two types of MUL instructions. One for unsigned
value (MUL) and one for signed (IMUL).

F7 EB IMUL BX ; DX:AX = AX * BX

23

DIV

Division has a signed (IDIV) and an unsigned (DIV) forms. They
divides a number represented by a pair of registers DX:AX,
where DX is high part and AX is low part by the argument. The
quotient is written to AX, the remainder to DX.

 DIV src ; AX = DX:AX / src

 ; DX = DX:AX % src

F7 F3 DIV BX ; AX = DX:AX / BX

 ; DX = DX:AX % BX

F7 FB IDIV BX ; AX = DX:AX / BX

 ; DX = DX:AX % BX

24

CWD

In case a division of a 16-bit number by a 16-bit number
is required, 16-bit divident need to be expanded to 32-
bit pair DX:AX. For unsigned numbers we just need to
zero out high half.

31 D2 XOR DX,DX ; zero out dx

F7 F3 DIV BX

For signed special instruction CWD exists to copy the
highest bit of AX to all bits of DX.

99 CWD

F7 FB IDIV BX

25

CWD

F840

AX (16-bit)

= -1984

= -1984FFFFF840

DX:AX (32-bit)

1

AX (16-bit)

= -1984

= -1984

DX:AX (32-bit)

1 1 1 1 0 ... 0

1 1 1 1 1 0 ... 01 1 1 1 1 1 ... 1

CWD converts 16-bit
value in AX to 32-bit
value in DX:AX.

99 CWD

F7 FB IDIV BX

This operation is called

“signed extension”.

26

DIV

In case a division by zero is requested. The execution
of the program is interrupted and the control is
transferred to the OS. It is up to the OS to decide what
to do with the program next. The program is usually
terminated. Most OSes provide a (OS-specific) way to
handle the division by zero and to continue the
execution.

When the result of 32-bit by 16-bit division doesn’t fit
16-bit register the same error as division by zero is
reported.

27

Shifts

For shifts there are three instructions available:

D3 E0 SHL AX,CL

D3 E8 SHR AX,CL

D3 F8 SAR AX,CL

28

Shifts

1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0

1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0

SHL AX,3

1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0

0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1

SHR AX,3

1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0

1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1

SAR AX,3SHR is called logical shift. It is
used for unsigned numbers.

SAR is called arithmetic shift.
It is used for signed numbers.

015015

015

29

Branches, JMP

Instruction JMP modify register IP, so the next
instruction to be executed is not the next instruction
after JMP, but the instruction at the address specified
in the argument.

40 loop: INC AX

EB FD JMP loop

FD means -3. It is added to register IP after execution
of JMP instruction. It means that targets of 2-byte JMP
instruction must be within range -128..127 from the
end of JMP instruction.

30

JMP

In case JMP target is further than -128..127 then longer
form of JMP can be used.

E9 34 12 JMP label

... 0x1234 bytes of data

label:

31

Conditional Branches

To make a conditional branch a pair of instructions is
required:

39 D8 cmp ax, bx ; compare ax and bx

74 10 je label ; jump if ax == bx

39 D8 cmp ax, bx ; compare ax and bx

7F 10 jg label ; jump if ax > bx

32

Conditional branches

There are many types of conditional branches:

je, jne jump if equal/not-equal

jg, jng jump if greater (signed)

jl, jnl jump if less (signed)

ja, jna jump if above (unsigned)

jb, jnb jump if below (unsigned)

33

FLAGS register

cmp instruction modifies the register called FLAGS.

jxx instructions reads register FLAGS and jump according
to the condition.

Bits from this register have they own names:
● bit C is called carry flag
● bit Z is called zero flag
● bit S is called sign flag
● bit O is called overflow flag

C1PA 0Z 0STIDO0000

015

34

Conditional branches

There are jxx instructions that checks the specific bits
in FLAGS register.

jc/jnc jump if carry flag is set

jz/jnz jump if zero flag is set

js/jns jump if sign flag is set

jo/jno jump if overflow flag is set

35

FLAGS register

Register FLAGS is modified not only by instruction CMP, but
also by most other arithmetic instructions (ADD, SUB, MUL,
etc).

CMP modifies register FLAGS the same way SUB instruction
does (CMP is SUB that doesn’t write destination).

ADD/SUB modify FLAGS register in the following way:
● ZF (zero) is set when the result is zero.
● SF (sign) is set when the result is negative.
● CF (carry) is set when unsigned operation caused 16th bit

to be carried over/borrowed from
● OF (overflow) is set when signed operation causes

overflow.

36

Carry Flag vs Overflow Flag
 0000 + 0001 = 0001

signed 0 + 1 = 1

unsigned 0 + 1 = 1

OF = 0 CF = 0

 7FFF + 0001 = 8000

signed 32767 + 1 = -32768

unsigned 32767 + 1 = 32768

OF = 1 CF = 0

 FFFF + 0001 = 0000

signed -1 + 1 = 0

unsigned 65535 + 1 = 0

OF = 0 CF = 1

 8000 + 8000 = 0000

signed -32768 + -32768 = 0

unsigned 32768 + 32768 = 0

OF = 1 CF = 1

37

CMP vs SUB

cmp AX, BX

je label

Which flag je should
check?

sub AX, BX
● ZF (zero) is set when the

result is zero.
● SF (sign) is set when the

result is negative.
● CF (carry) is set when

unsigned operation caused
16th bit to be carried
over/borrowed from

● OF (overflow) is set when
signed operation causes
overflow.

38

CMP vs SUB

cmp AX, BX

je label

Which flag je should check?

Answer: ZF.

74 10 je label

74 10 jz label

je and jz is the same
instruction!

sub AX, BX
● ZF (zero) is set when the

result is zero.
● SF (sign) is set when the

result is negative.
● CF (carry) is set when

unsigned operation caused
16th bit to be carried
over/borrowed from

● OF (overflow) is set when
signed operation causes
overflow.

39

Conditional branches

There are jxx instructions that checks the specific bits
in FLAGS register.

je/jz jump if ZF=1

jc jump if CF=1

js jump if SF=1

jo jump if OF=1

40

CMP vs SUB

cmp AX, BX

ja/jb label

Which flag ja/jb should
check?

sub AX, BX
● ZF (zero) is set when the

result is zero.
● SF (sign) is set when the

result is negative.
● CF (carry) is set when

unsigned operation caused
16th bit to be carried
over/borrowed from

● OF (overflow) is set when
signed operation causes
overflow.

41

Conditional branches

There are jxx instructions that checks the specific bits
in FLAGS register.

je/jz jump if ZF=1

jb/jc jump if CF=1

ja jump if CF=0 & ZF=0

js jump if SF=1

jo jump if OF=1

42

CMP vs SUB

cmp AX, BX

jg/jl label

Which flag jg/jl should
check?

sub AX, BX
● ZF (zero) is set when the

result is zero.
● SF (sign) is set when the

result is negative.
● CF (carry) is set when

unsigned operation caused
16th bit to be carried
over/borrowed from

● OF (overflow) is set when
signed operation causes
overflow.

43

Flags Graph

CMP AX, BX

AX

BX

-215

-215

215-1

215-1

44

Flags Graph

CMP AX, BX

AX

BX

-215

-215

215-1

215-1 ZF=1

45

Flags Graph

CMP AX, BX

AX

BX

-215

-215

215-1

215-1 ZF=1SF=1

46

Flags Graph

CMP AX, BX

AX

BX

-215

-215

215-1

215-1 ZF=1SF=1

47

Flags Graph

CMP AX, BX

AX

BX

-215

-215

215-1

215-1 ZF=1SF=1

48

Flags Graph

CMP AX, BX

AX

BX

-215

-215

215-1

215-1 SF=1

49

Flags Graph

CMP AX, BX
BX

-215

-215

215-1 SF=1

AX

BX

-215

215-1

215-1 OF=1

50

Flags Graph

AX < BX
BX

-215

-215

215-1 SF=1

AX

BX

-215

215-1

215-1 OF=1

51

Conditional branches

There are jxx instructions that checks the specific bits in
FLAGS register.

je/jz jump if ZF=1

jb/jc jump if CF=1

ja jump if CF=0 & ZF=0

jl jump if SF≠OF

jg jump if SF=OF & ZF=0

js jump if SF=1

jo jump if OF=1

52

Branches

Many instructions update FLAGS register according to
the result of the operation. Sometimes conditional
branches can be made without cmp:

89 C2 loop: mov dx,ax

01 D8 add ax,bx

89 D3 mov bx,dx

49 dec cx

75 F7 jnz loop

53

Registers 32-bit

EAX
AX

ALAH

8 bit 8 bit

16 bit

32 bit

AX
ALAH

8 bit 8 bit

16 bit

54

EAX

Registers 32-bit

AX
ALAH

EBX
BX

BLBH

ECX
CX

CLCH

EDX
DX

DLDH

ESP SP

EBP BP

ESI SI

EDI DI

55

RAX

Registers 64-bit

EAX
AX

ALAH

8 bit 8 bit

16 bit

32 bit

64 bit

56

RAX EAX ALAH

RBX EBX BLBH

RCX ECX CLCH

RDX EDX DLDH

R8 R8D R8W R8B

R9 R9D R9W R9B

R10 R10D R10W R10B

R11 R11D R11W R11B

R12 R12D R12W R12B

R13 R13D R13W R13B

R14 R14D R14W R14B

R15 R15D R15W R15B

RSP ESP SP SPL

RBP EBP BP BPL

RSI ESI SI SIL

RDI EDI DI DIL

Registers 64-bit

AXAX

BX

CX

DX

57

Addressing modes

MOV reg, [reg + {1,2,4,8} * reg + imm]

48 8B 44 8B 01 MOV RAX, [RBX + RCX*4 + 1]

48 8D 44 8B 01 LEA RAX, [RBX + RCX*4 + 1]

58

ADC

ADD AX, BX

(17-bit) (16-bit) (16-bit)

 CF:AX = AX + BX

ADC AX, BX

(17-bit) (16-bit) (16-bit) (1-bit)

 CF:AX = AX + BX + CF

59

SBB

SUB AX, BX

(17-bit) (16-bit) (16-bit)

 CF:AX = AX - BX

SBB AX, BX

(17-bit) (16-bit) (16-bit) (1-bit)

 CF:AX = AX - BX - CF

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34
	Страница 35
	Страница 36
	Страница 37
	Страница 38
	Страница 39
	Страница 40
	Страница 41
	Страница 42
	Страница 43
	Страница 44
	Страница 45
	Страница 46
	Страница 47
	Страница 48
	Страница 49
	Страница 50
	Страница 51
	Страница 52
	Страница 53
	Страница 54
	Страница 55
	Страница 56
	Страница 57
	Страница 58
	Страница 59

