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1. Творческий кризис Кохася
1.1. Системы Штейнера

1.1.1. Мудрецы и шляпы
У нас есть 𝑛 мудрецов и 𝑘 шляп 𝑘 ≥ 𝑛. Мудрецы стоят в ряд. Каждому мудрецу на голову надевают одну
из 𝑘 шляп, выбранную случайным образом. Мудрец не видит шляпу на своей собственной голове, но
видит шляпы всех впереди стоящих мудрецов (тот, кто стоит последним в ряду, видит всех, кроме себя,
а тот, кто стоит первым, не видит никого).

Мудрецы не могут общаться друг с другом, жестами, поворачиваться и т.д. Однако, начиная с затылка
ряда (с того, кто видит больше всех), каждого мудреца по очереди спрашивают: «Какого цвета твоя
шляпа?». Мудрец должен ответить одним из 𝑘 возможных цветов. При этом нельзя повторять цвета. Его
цель — назвать правильный цвет. Мудрецы могут заранее договориться об общей стратегии, чтобы
максимизировать число гарантированно угаданных шляп. В этом и состоит наша задача.

Есть разные интересные простые частные решения. Для расширения кругозора тык (там с самого
начало). Нас интересует нечто другое.

1.1.2. Идея
Что вот по-хорошему должны сделать мудрецы?
• Первый мудрец почти всегда проиграет, он не может угадать, что у него на голове
• Первый должен передать какой-то «ключ» своим коллегам перед ним и коллеги имея ключ должны

угадать свой номер. То есть по факту каждый человек видит ключ(key) знает тех, кто был до него и
видит тех, кто был после него:

𝑘𝑒𝑦   1  …  3  ?   5  …  4

Мы хотим такой список, что зная 𝑛 − 1 число, мы можем понять 𝑛-ое.

1.1.3. Система Штейнера

Определение. Система Штейнера 𝑆(𝑡, 𝑛, 𝜈)
КПК вообще сделал лирическое отступление про «Конструктор Ромашку». Пример странный, так что
формальное объяснение:

Система Штейнера это набор из 𝑛 —элементных подмножеств множества 𝑋 из 𝜈 элементов таких,
что любое 𝑡 —элементное подмножество множества 𝑋 содержалось ровно в одном из выбранных
подмножеств.

В литературе чаще используют 𝑆(𝑡, 𝑘, 𝜈)

По факту наша задача про мудрецов свелась к 𝑆(𝑛 − 1, 𝑛, 𝑘).

Бывает 𝑆(4, 5, 11), не бывает 𝑆(3, 4, 7)

1.1.4. Решаем мудрецов 𝑛 = 4, 𝑘 = 9
Они берут конечное поле из 8 элементов: 𝐹8. Мы знаем, что конечные поля существуют в 𝐹𝑝𝑙 .

Есть ℝ и ℝ3, мы умеем думать об ℝ3 как о коэффициентах перед 𝑖, 𝑗, 𝑘. Возьмем идею.

Возьмем 1, 𝜉, 𝜉2 - 3 линейно независимых векторов в ℝ3. Пусть у нас выполнено:

𝜉3 + 𝜉 + 1 = 0

У нас получается нечто из 8 точек(будем ставить 0 или 1 перед 1, 𝜉, 𝜉2). Почему-то они удовлетворяют
аксиомам поля (можете проверить).
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𝑓(𝑥) = 𝑎𝑥+𝑏
𝑐𝑥+𝑑  - гипербола, если 𝑎𝑑 − 𝑏𝑐 ≠ 0.

Будем считать, что 𝑓 : (ℝ ∪ {∞}) → (ℝ ∪ {∞}) - проективная прямая

Оно представляет все точечки, кроме асимптоты. Поэтому будем считать, что ∞ → 𝑎
𝑐 , −𝑑

𝑐 → ∞. То есть
у нас биективная функция.

Теорема.
∀𝑎, 𝑏, 𝑐⏝

разл.

∈ ℝ : ∀ 𝐴, 𝐵, 𝐶⏝
разл.

∈ ℝ : ∃!𝑓  - дробно-линейная, такая что:

𝑓(𝑎) = 𝐴, 𝑓(𝑏) = 𝐵, 𝑓(𝑐) = 𝐶

Доказательство:
Вот она:

𝑦 − 𝐴
𝑦 − 𝐵

: 𝐶 − 𝐴
𝐶 − 𝐵

= 𝑥 − 𝑎
𝑥 − 𝑏

: 𝑐 − 𝑎
𝑐 − 𝑏

КПК: Единственность покажете сами

Q.E.D.

А теперь склеиваем все воедино.

• Первый мудрец видит перед собой номера шляп: 𝑏, 𝑐, 𝑑. По вышесказанной теореме существует
функция, которое отображает 𝑓(2) = 𝑏, 𝑓(3) = 𝑐, 𝑓(4) = 𝑑. Так как она единственная Первый мудрец
говорит 𝑓(1)

• Второй мудрец имея 3 числа из 4 восстанавливает дробно-линейную функцию, а так как она
единственная то получает ту же самую. Он восстанавливает свой номер и называет его

• Остальные аналогично восстанавливают свой номер

1.1.5. Еще решения мудрецов
𝑋 - множество, |𝑋| = 𝑘 > 23

Линия - это подмножество 𝑋
1. Любые две пересек. по ≤ 1 точке
2. ∀𝑎, 𝑏 ∈ 𝑋 : ∃! линия 𝑙: 𝑎, 𝑏 ∈ 𝑙
3. |𝑙| = 4, 5, 6

В угоду моей психике это будет сделано позже
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2. Теория Меры
2.1. Системы множеств

Определение. Полукольцо множеств 𝒫
𝑋 - множество. 𝒫 ⊂ 2𝑋 - полукольцо, если:
1. ∅ ∈ 𝒫
2. ∀𝐴, 𝐵 ∈ 𝒫, 𝐴 ∩ 𝐵 ∈ 𝒫
3. ∀𝐴, 𝐵 ∈ 𝒫, ∃𝐵1, …, 𝐵𝑛⎵⎵⎵⎵

диз.

∈ 𝒫 : 𝐴 ∖ 𝐵 = ⋃
𝑛

𝑘=1
𝐵𝑘

Пример. Полукольцо ячеек в ℝ𝑚

𝑎, 𝑏 ∈ 𝑅𝑚 : [𝑎, 𝑏) = {𝑥 ∈ ℝ𝑚 : ∀𝑥 = 1…𝑚 : 𝑎𝑘 ≤ 𝑥𝑘 < 𝑏𝑘}

То есть множество таких параллелепипедов. Очевидно оно удовлетворяет всем трем аксиомам
полукольца.

Еще пример
𝑋 = {1, …, 6}𝑚. Покажем, что 𝒫 - полукольцо для этого множества
1. Очевидно принадлежит.
2. 𝐴𝑐1𝑐2

∩ 𝐴𝑐5
= 𝐴𝑐1𝑐2𝑐5

∈ 𝑃  - работает
3. TODO

Пример. Полукольцо рациональных чисел
[𝑎, 𝑏), где 𝑎𝑖, 𝑏𝑖 ∈ ℚ

Антисвойство
𝒫 - полукольцо: 𝐴, 𝐵 ∈ 𝒫. Тогда вообще говоря 𝐴 ∪ 𝐵, 𝐴 ∖ 𝐵, 𝑋 ∖ 𝐴, 𝐴 ▵ 𝐵 не лежат в 𝒫

Свойство:
∀𝐴, 𝐵1, …, 𝐵𝑘 ∈ 𝒫 : ∃𝐷1, …, 𝐷𝑛⎵⎵⎵⎵

диз.

 - кон. количество: 𝐴 ∖ ( ⋃
𝑘

𝑖=1
𝐵𝑖) = ⋃

𝑛

𝑗=1
𝐷𝑗

Это доказывается по индукции

Определение. Алгебра подмножеств пространства 𝑋
𝒶 ⊂ 2𝑋 - такой объект называется алгеброй, если выполнены свойства:
1. 𝑋 ∈ 𝒶
2. 𝐴, 𝐵 ∈ 𝒶 ⇒ 𝐴 ∖ 𝐵 ∈ 𝒶

Свойства
1. ⌀ = 𝑋 ∖ 𝑋 ∈ 𝒶
2. 𝐴, 𝐵 ∈ 𝒶 ⇒  𝐴 ∩ 𝐵 = 𝐴 ∖ (𝐴 ∖ 𝐵) ∈ 𝒶
3. 𝐴𝑐 = 𝑋 ∖ 𝐴 ∈ 𝒶
4. 𝐴 ∪ 𝐵 = (𝐴𝑐 ∩ 𝐵𝑐)𝑐 ∈ 𝒶
5. Всякая алгебра есть полукольцо

Пример. Тривиальный - 2𝑋

Пример. Хитрый, но простой
𝑋 = ℝ2. 𝒶 состоит ограниченных множеств и из дополнений ограниченных множеств.
• ∅, 𝑋 ∈ 𝒶
• Выполняется вторая аксиома:

1. 𝐴 - огр.
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2. 𝐴𝑐 - огр. +. 𝐵 - огр. ⇒ (𝐴 ∖ 𝐵)𝑐 - огр. +. 𝐵𝑐 - огр. ⇒ 𝐴 ∖ 𝐵 ⊂ 𝐵𝑐 ⇒ огр.

Пример. На счётность
𝑋 = бесконечное множество: 𝒶 = {𝐴 ⊂ 𝑋 : 𝐴 НБЧС или 𝑋 ∖ 𝐴 НБЧС}

Определение. 𝜎-алгебра 𝒶 подмножества 𝑋
𝒶 ∈ 2𝑋 и выполняется:
1. 𝒶 - алгебра
2. ∀𝐴1, 𝐴2, … ∈ 𝒶 : ⋃

+∞

𝑖=1
𝐴𝑖 ∈ 𝒶

Свойство:

∀𝐴1, 𝐴2, … ∈ 𝒶 : ⋂
+∞

𝑖=1
𝐴𝑖 ∈ 𝒶

6
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2.2. Объем

Определение. Конечно аддитивная функция
𝑋, 𝒫 - полукольцо подмножеств 𝑋, 𝜑 : 𝒫 → ℝ. 𝜑 - конечно аддитивная функция, если:
1. 𝜑(∅) = 0
2. 𝐴, 𝐴1, …, 𝐴𝑚, 𝐴 = ⨆

𝑛

𝑖=1
𝐴𝑖 - дизъюнктное объединение, выполнено:

𝜑(𝐴) = ∑
𝑚

𝑖=1
𝜑(𝐴𝑖)

Определение. Объем
𝑋, 𝒫 - полукольцо подмножеств 𝑋, 𝜑 : 𝒫 → ℝ. 𝜑 - объем, если:
1. 𝜑 ≥ 0
2. 𝜑 - конечно-аддитивно

Пример.
𝑔 : ℝ → ℝ возрастает и непрерывно. Давайте зададим 𝜇𝑔[𝑎, 𝑏) = 𝑔(𝑏) − 𝑔(𝑎) - тоже пример объема.

Теорема. Свойства
𝜇 : 𝒫 → ℝ, где 𝒫 - полукольцо. Тогда выполнено:

0. 𝐵 ⊂ 𝐴 ⇒ 𝜇𝐵 ≤ 𝜇𝐴 — монотонность объема.

1. Усиленная монотонность: ∀𝐴1, …, 𝐴𝑛, 𝐴 ∈ 𝒫 : ⨆
𝑛

𝑖=1
𝐴𝑖 ⊂ 𝐴:

𝜇𝐴 ≥ ∑
𝑛

𝑖=1
𝜇𝐴𝑖

2. Конечная полуаддитивность: ∀𝐴1…., 𝐴𝑛 : 𝐴 ⊂ ⋃
𝑛

𝑖=1
𝐴𝑖:

𝜇𝐴 ≤ ∑ 𝑢𝐴𝑖

3. 𝐴, 𝐵, 𝐴 ∖ 𝐵 ∈ 𝒫 : 𝜇(𝐵) < +∞. Тогда:

𝜇(𝐴 ∖ 𝐵) ≥ 𝜇𝐴 − 𝜇𝐵

Доказательство:
1. 𝐴 ∖ (⨆ 𝐴𝑖) = ⨆

кон.
𝐵𝑗 - по модиф. условию кольца. Тогда по вышесказанному:

𝐴 = ⨆ 𝐴𝑖 ∪ ⨆ 𝐵𝑗

По определения объема:

𝜇𝐴 = ∑ 𝜇𝐴𝑖 + ∑ 𝜇𝐵𝑗

Что и требовалось показать.

2. 𝐵𝑖 ≔ 𝐴 ∩ 𝐴𝑖 ∈ 𝒫 : 𝐴 = ⋃
кон.

𝐵𝑖.

Теперь давайте действовать так: Обозначим за 𝐶𝑖 - то какие части множества добавляет та или иная 𝐵𝑖
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𝐶𝑖 = 𝐵𝑖 ∖ (⋃
𝑖−1

𝑗=1
𝐵𝑗)

Тогда 𝐴 = ⨆
𝑛

𝑖=1
𝐶𝑖. НО. Мы не можем сразу сделать вывод об объеме, так как не факт что 𝐶𝑖 лежат у нас

в полукольцо. НО каждое 𝐶𝑖 мы можем составить из конечного числа множеств по аксиомам
полукольца. Воспользуемся усиленной монотонностью и докажем требуемое.

3. Он очевиден из прошлых пунктов.

КПК: Это проверка на вашу вменяемость

Q.E.D.
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2.3. Мера

Определение. Мера.
𝑋, 𝒫 - полукольцо: 𝜇 : 𝒫 → ℝ — мера, если:
1. 𝜇 - объем
2. 𝜇 - счетно-аддитивно

Замечание: Счетная аддитивность: ∀𝐴1, … ∈ 𝒫 : 𝐴 = ⨆ 𝐴𝑖 : 𝜇𝐴 = ∑
+∞

𝑖=1
𝜇𝐴𝑖

Замечание: Объем ⇏ выполняется счетная аддитивность.

Теорема об эквивалентности счетной аддитивности и счетной
полуаддитивности .
𝜇 : 𝒫 → ℝ — объем. Тогда эквивалентно:
1. 𝜇 — мера, т.е 𝜇 — счетно-аддитивна
2. 𝜇 — счетно-полуаддитивна (нет дизъюнктивности): ∀𝐴, 𝐴1… ∈ 𝒫,  𝐴 ⊂ ⋃ 𝐴𝑖 :

𝜇𝐴 ≤ ∑
𝑖

𝜇𝐴𝑖

Доказательство:
1 ⇒ 2. Берем второй пункт теоремы о свойствах объема, но вместо конечного объединения по 𝑘
берем счетное объединение (так как у нас теперь мера, то все хорошо) и тадам, все получается.

2 ⇒ 1. Надо проверить, что:

𝐴 = ⨆
∞

𝑖=1
𝐴𝑖 ⇒

?
𝜇𝐴 = ∑

∞

𝑖=1
𝜇𝐴𝑖

Воспользуемся усиленной монотонностью, тогда для любого 𝑛 будет верно:

∑
𝑛

𝑖=1
𝜇𝐴𝑖 ≤ 𝜇𝐴

По определению счетной полуаддитивности:

𝜇𝐴 ≤ ∑
∞

𝑖=1
𝜇𝐴𝑖

Итого :

∑
𝑛

𝑖=1
𝜇𝐴𝑖 ≤ 𝜇𝐴 ≤ ∑

∞

𝑖=1
𝜇𝐴𝑖

И если перейти к пределу при 𝑛 → +∞ мы сразу получим то, что требуется.

Q.E.D.

Следствие: 𝐴 ∈ 𝒫, 𝐴𝑛 ∈ 𝒫, 𝜇𝐴𝑛 = 0, 𝜇 - объем. Пусть 𝐴 ⊂ ⋃ 𝐴𝑛. Тогда 𝜇𝐴 = 0

Теорема о непрерывности меры снизу.
𝒶 - алгебра. 𝜇 : 𝒶 → ℝ - объем. Тогда:
1. 𝜇 — мера
2. 𝜇 — непрерывны снизу:
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∀𝐴, 𝐴1, 𝐴2, … ∈ 𝒶, 𝐴1 ⊂ 𝐴2 ⊂ …, 𝐴 = ⋃
∞

𝑖=1
𝐴𝑖

Следует:

𝜇𝐴 = lim
𝑖→∞

𝜇𝐴𝑖

Теорема о непрерывности меры сверху.
𝒶 — алгебра, 𝜇 : 𝒶 → ℝ — конечный объем. Тогда эквивалентно:
1. 𝜇 — мера, т.е счетно-аддитивна
2. 𝜇 — непрерывна сверху, те:

∀𝐴, 𝐴1, 𝐴2, … ∈ 𝒶, 𝐴1 ⊃ 𝐴2 ⊃ …, 𝐴 = ⋂
∞

𝑖=1
𝐴𝑖

Следует:

𝜇𝐴 = lim
𝑖→∞

𝜇𝐴𝑖

Доказательство:
Нарисуем упрощающий рисунок:

1 ⇒ 2
Пусть 𝐵𝑘 ≔ 𝐴𝑘 ∖ 𝐴𝑘+1. Тогда такие 𝐵𝑘 дизъюнктивны. Отсюда получаем, что

𝐴1 = ⨆
∞

𝑖=1
𝐵𝑖 ⊔ 𝐴

Так как 𝜇 мера, то получаем, что:

𝜇𝐴1 = ∑
∞

𝑖=1
𝜇𝐵𝑖

⎵⎵⎵
сходится

+ 𝜇𝐴

Теперь посмотрим на «хвост» этого ряда, и аналогично первому утверждению доказательства
напишем:

10
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𝜇𝐴𝑖 = ∑
∞

𝑘=𝑖
𝜇𝐵𝑘 + 𝜇𝐴

Т.к. ряд из ∑
∞

𝑖=1
𝜇𝐵𝑖 сходится, то при 𝑖 → +∞, «хвост» → 0 :  ∑

∞

𝑘=𝑖
𝜇𝐵𝑘 →

𝑖→+∞
0 Делаем предельный

переход в равенстве выше, и получаем:

lim
𝑖→∞

𝜇𝐴𝑖 = 0 + 𝜇𝐴 = 𝜇𝐴

2 ⇒ 1. Эта часть доказательства будет потом переписана, автор пока копирует то, что говорит Кохась.
Если что это примерно 10 минут после перерыва.

В доказательстве этого пункта мы будем пользоваться только следствием пункта 2, а именно:

𝐴1 ⊃ 𝐴2 ⊃ …, 𝐴 = ⋂ 𝐴𝑘 = ⌀ ⇒ 𝜇𝐴 = lim
𝑖→+∞

𝜇𝐴𝑖 = 0

Мы хотим проверить счетную аддитивность, т.е.

𝐶 = ⨆
∞

𝑖=1
𝐶𝑖 ⇒

?
𝜇𝐶 = ∑

∞

𝑖=1
𝜇𝐶𝑖

Для этого введем множества 𝐴𝑘 следующим образом:

𝐴𝑘 = ⋃
∞

𝑖=𝑘+1
𝐶𝑖 = 𝐶 ∖ (⨆

𝑘

𝑖=1
𝐶𝑖)

Так как это конечное объединение, то ⨆
𝑘

𝑖=1
𝐶𝑖 ∈ 𝒶, а значит и правая часть ∈ 𝒶 ⇒ 𝐴𝑘 ∈ 𝒶

Заметим также, что ⋂
+∞

𝑘=1
𝐴𝑘 = ⌀, т.к. все 𝐶𝑖 дизъюнктны, то любая точка из 𝐶 содержится ровно в

одном 𝐶𝑖, а значит в 𝐴𝑘>𝑖 она уже содержаться не будет (по определению 𝐴𝑘), и в пересечении всех
𝐴𝑘 её тоже не будет
Отсюда следует, что мы можем применять следствие 2 пункта из начала доказательства.
Осталось только заметить, что:

𝐶 = ⨆
𝑘

𝑖=1
𝐶𝑖 ⊔ 𝐴𝑘

Т.к. 𝜇 — объем:

𝜇𝐶 = ∑
𝑘

𝑖=1
𝜇𝐶𝑖 + 𝜇𝐴𝑘

Делаем предельный переход при 𝑘 → +∞

𝜇𝐶 = ∑
+∞

𝑖=1
𝜇𝐶𝑖 + 0

Q.E.D.
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2.4. Продолжение меры.
Определение. Пространство с мерой

Обозначается тройкой 
(
(( 𝑋⎵

мн-во
, 𝒶⎵
𝜎-алг.

, 𝜇⎵
мера)

))

Определение. Сигма-конечная мера
𝜇 : 𝒫 ⊂ 2𝑋 → ℝ — мера (или объём)
𝜇 — 𝜎-конечная мера (или объем), если

∃𝐴1, 𝐴2, … ∈ 𝒫 𝑋 = ⋃
+∞

𝑖=1
𝐴𝑖,  𝜇(𝐴𝑖) < +∞

Замечание. Множество измеримо, если оно лежит в области определения меры

Теорема о лебеговском продолжении меры.
𝒫0 ⊂ 2𝑋 — полукольцо: 𝜇0 : 𝒫0 → ℝ — 𝜎-конечная мера.

Тогда ∃𝜎-алгебра 𝒶 : 𝒫0 ⊂ 𝒶  и ∃𝜇 - мера на 𝒶 такие, что:
1. 𝜇|

𝒫
= 𝜇0, т.е. 𝜇 — продолжение 𝜇0 на 𝒶

2. 𝜇 — полная мера

3. Если 𝒶1 - 𝜎-алгебра, 𝜇1-мера, полная, 𝒫 ∈ 𝒶1, 𝜇1|𝒫, то 𝒶 ⊂ 𝒶1, 𝜇1|𝑎 = 𝜇
4. Если 𝒫 ⊂ 𝒫2 ⊂ 𝒶 : 𝜇2 |𝒫 = 𝜇0, то тогда 𝜇|𝒫2

= 𝜇2
5. 𝐴 ∈ 𝒶, 𝜇𝐴 - кон, то

𝜇𝐴 = inf(∑ 𝜇𝑃𝑘, 𝐴 ⊂ ⋃
+∞

𝑘=1
𝑃𝑘, где 𝑃𝑘 ∈ 𝒫)

К счастью, без доказательства

Определение. 𝜇-измеримое множество
𝐴 ⊂ 𝑋 − 𝜇-измеримо, если ∀𝐸 ⊂ 𝑋 :

𝜇𝐸 = 𝜇(𝐴 ∩ 𝐸) + 𝜇(𝐴𝐶 ∩ 𝐸)
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2.5. Мера Лебега.
Автор ничего не понимает и еще в будущем будет стдеть и перепечатывать доказательство. Пока так.

Лемма. Счетная аддитивность классического объема
Счетная аддитивность классического объема 𝒫𝑚 — множество всех ячеек на ℝ𝑚.
𝜇 — классический объем. Тогда 𝜇 — 𝜎-конечная мера.

Доказательство:
1. 𝜎-конечность очевидна: можно либо разлиновать пространство на клеточки как в тетради, либо

просто взять увеличивающийся параллелепипед
2. Надо доказать счетную аддитивность. Давайте по теореме об эквив. счетной аддитивности и

полуаддитивности, докажем полуаддитивность:

𝑃 = [𝑎, 𝑏),  𝑃𝑛 = [𝑎𝑛, 𝑏𝑛) :  𝑃 ⊂ ⋃
+∞

𝑛=1
𝑃𝑛 ⇒

?
 𝜇𝑃 ≤ ∑ 𝜇𝑃𝑛

Далее под фразой «чуть уменьшим» вектор из ℝ𝑚 будем подразумевать небольшое уменьшение
каждой из его координат. Возьмем 𝜀 > 0:
1. Чуть уменьшим 𝑏 и получим 𝑏′ :

[𝑎, 𝑏′] ⊂ [𝑎, 𝑏) :  𝜇(𝑃 ∖ [𝑎, 𝑏′)) < 𝜀

2. Теперь для каждого 𝑃𝑛 немного уменьшим 𝑎𝑛 и получим 𝑎′
𝑛 :

(𝑎′
𝑛, 𝑏𝑛) ⊃ [𝑎𝑛, 𝑏𝑛) :  𝜇([𝑎′

𝑛, 𝑏𝑛) ∖ 𝑃𝑛) < 𝜀
2𝑛

3. Получаем, что [𝑎, 𝑏′]⎵
компакт

⊂ ⋃+∞
𝑛=1(𝑎

′
𝑛, 𝑏𝑛)

Т.к. это компакт, а справа стоит открытое покрытие, то по определению существует конечное
подпокрытие:

[𝑎, 𝑏′] ⊂ ⋃
𝑁

𝑛=1
(𝑎′

𝑛, 𝑏𝑛)

Теперь в правую часть включения добавим часть точек, а слева уберем. Очевидно включение от этого
не сломается:

[𝑎, 𝑏′) ⊂ ⋃
𝑁

𝑛=1
[𝑎′

𝑛, 𝑏𝑛)

По конечной аддитивности:

𝜇[𝑎, 𝑏) − 𝜀 ≤
(1)

𝜇[𝑎, 𝑏′) ≤
(3)

∑
𝑁

𝑛=1
𝜇[𝑎′

𝑛, 𝑏𝑛) ≤
(2)

∑
𝑁

𝑛=1
(𝜇[𝑎𝑛, 𝑏𝑛) + 𝜀

2𝑛 )

𝜇[𝑎, 𝑏) ≤ 𝜀 + ∑
𝑁

𝑛=1
𝜇[𝑎𝑛, 𝑏𝑛) ≤ 2𝜀 + ∑

+∞

𝑛=1
𝜇[𝑎𝑛, 𝑏𝑛)

Делаем предельный переход при 𝜀 → 0 и получаем ровно то, что и хотели.

Q.E.D.
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Определение. Мера Лебега
Мера Лебега в ℝ𝑚 — это результат применения теоремы о продолжении лебеговском продолжении
меры к класс. объему.

(ℝ𝑚, 𝒫, 𝜇0) ⇝ (ℝ𝑚, 𝓂𝑚, 𝜆), где 𝜇0 - классический объема, 𝜆, 𝜆𝑚 — мера Лебега (иногда хотим
указывать размерность пространства)

Свойство:
1. Объединение, пересечение (в том числе счетные) множеств, изменимые по Лебегу тоже
2. Полнота. 𝜆𝐴 = 0, 𝐵 ⊂ 𝐴 ⇒ 𝜆𝐵 = 0
3. Содержит все открытые и замкнутые множества в ℝ𝑚 (доказательство см ниже)
4. 𝐸 — измеримо и 𝜆(𝐸) = 0 ⇒ у 𝐸 нет внутренних точек
5. 𝐴 ∈ ℳ𝑚, тогда ∀𝜀 > 0 :

• ∃ открытое 𝐺𝜀 : 𝐴 ⊂ 𝐺𝜀 : 𝜆(𝐺𝜀 ∖ 𝐴) < 𝜀
• ∃ замкнутое 𝐹𝜀 : 𝐴 ⊃ 𝐹𝜀 : 𝜆(𝐴 ∖ 𝐹𝜀) < 𝜀

Доказательство:
5. Пусть 𝜆𝐴 < +∞ : ∀𝜀 > 0 : ∃𝑃𝑘 : 𝐴 ⊂ ⋃ 𝑃𝑘 по пункту 5 теоремы о лебеговском продолжении меры

𝜆𝐴 ≤ ∑ 𝜆𝑃𝑘 ≤ 𝜆𝐴 + 𝜀

Заменим 𝑃𝑘 = [𝑎𝑘, 𝑏𝑘] на 𝑃 ′
𝑘 = (𝑎𝑘 − 𝛼𝑘, 𝑏𝑘), так, чтобы 𝜆𝑃𝑘′ < 𝜆𝑃𝑘 + 𝜀

2𝑘 .

Возьмем 𝐺𝜀 ≔ ⋃ 𝑃 ′
𝑘  - открытое. Тогда:

𝜆𝐴 ≤ ∑ 𝜆𝑃 ′
𝑘 < (∑ 𝜆𝑃𝑘) + 𝜀 < 𝜆 + 2𝜀

Заметим, что тогда выбранное 𝐺𝜀 удовлетворяет условию.

Теперь для произвольного 𝐴: ℝ𝑚 = ⨆ 𝑄𝑖. 𝐴 ∩ 𝑄𝑖. Существует открытое 𝐺𝑖, что (𝐴 ∩ 𝑄𝑖) ⊂ 𝐺𝑖

𝜆(𝐺𝑖 ∖ (𝐴 ∩ 𝑄𝑖)) < 𝜀
2𝑖

TODO: тут не совсем понял, как мы такие 𝐺𝑖 можем выбрать, ладно

𝐴 = ⨆(𝐴 ∩ 𝑄𝑖) ⊂ ⋃ 𝐺𝑖 = 𝐺 - открытое.

Ну и видно, что найденное 𝐺 подходит условию.

Q.E.D.

TODO: пропущены следствия, можете пожалуйста их сформулировать кто=то

Лемма. О смысле жизни открытых и замкнутых множеств
𝑂 ⊂ ℝ𝑚 — открытое. Тогда ∃𝑄𝑖 :  𝑂 = ⨆

+∞

𝑖=1
𝑄𝑖, где 𝑄𝑖 — кубические ячейки:

• можно считать, что у ни с рациональными координатами.
• можно даже считать, что с двоично-рациональными
• они «закопаны» внутрь области O. 𝑄𝑖 ⊂ 𝑄𝑖 ⊂ 𝑂

Доказательство:
∀𝑥 ∈ 𝑂 :Возьмем 𝑄(𝑥) - любую кубические ячейку с нужными нам из условия свойствами

𝑂 = ⋃
𝑥∈𝑄

𝑄(𝑥) =
шаманим

⋃
+∞

𝑖=1
𝑄(𝑥𝑖)
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Шаманство: 𝑂 — континуальное множество. Казалоcь бы, как такое посчитать. Заметим, что ячеек с
двоично-рациональными координатами счетно. Так что мы просто пройдемся по ним и будем
нумеровать, так что шаманство работает!

Q.E.D.
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3. Интеграл
Определение. Разбиение множества E
Разбиением множества E называется его разбиение на конечное количество множеств, то есть:

𝐸 = ⨆ 𝐸𝑖

Определение. Ступенчатая функция
𝑓 : 𝑋 → ℝ — называется ступенчатой, если:

∃𝑒𝑖 : 𝑋 = ⨆
кон.

𝑒𝑖 :  ∀𝑖 𝑓|
𝑒𝑖

= const

При этом такое разбиение называется допустимым.

Пример: Характеристическая функция 𝜒𝑒𝑘
= {1, 𝑥∈𝑒𝑘

0, 𝑥∉𝑒𝑘

Свойства
1. Если 𝑓, 𝑔 — ступенчатые функции, то ∃ разбиение, допустимое для обоих
2. 𝑓, 𝑔 — ступенчатые, 𝛼 ∈ ℝ. Тогда:

𝑓 + 𝑔,  𝑓𝑔,  max(𝑓, 𝑔),  min(𝑓, 𝑔),  |𝑓|,  𝛼𝑓 − ступенчатые

Доказательство этих свойств очевидно

Определение. Лебеговские множества.
Пусть есть 𝑓 : 𝐸 ⊂ 𝑋 → ℝ и 𝑎 ∈ ℝ. Тогда следующие 4 множества называются Лебеговскими:
1. 𝐸(𝑓 < 𝑎) = {𝑥 ∈ 𝐸,  𝑓(𝑥) < 𝑎}
2. 𝐸(𝑓 ≤ 𝑎) = {𝑥 ∈ 𝐸,  𝑓(𝑥) ≤ 𝑎}
3. 𝐸(𝑓 ≥ 𝑎) = {𝑥 ∈ 𝐸,  𝑓(𝑥) ≥ 𝑎}
4. 𝐸(𝑓 > 𝑎) = {𝑥 ∈ 𝐸,  𝑓(𝑥) > 𝑎}

Замечания:

• 𝐸(𝑓 > 𝑎) = (𝐸(𝑓 ≤ 𝑎))𝑐

• 𝐸(𝑓 ≤ 𝑎) = ⋂
𝑛∈ℕ

𝐸(𝑓 < 𝑎 + 1
𝑛)

TODO: те ли замечания?

Определение. Измеримая функция
(𝑋, 𝒶, 𝜇) — пространство с мерой. Возьмем 𝑓 : 𝐸 ⊂ 𝑋 → ℝ, 𝐸 ∈ 𝒶. Тогда 𝑓  — измерима на 𝐸, если

∀𝑎 ∈ ℝ :  𝐸(𝑓 < 𝑎) ∈ 𝒶

(аналогично для еще 3х случаев)

Замечание: Если 𝑓  измеримо на 𝑋 говорят, что 𝑋 просто измеримо. Если 𝑋 = ℝ𝑚, 𝒶 = 𝓂𝑚, то
говорят, что 𝑋 измеримо по Лебегу

TODO: так ли это??!?!?!?

TODO: пропущено замечание про эквивалентность, потому что не разобрал

Свойства:
1. 𝑓  — измерима ⇒ ∀𝑎 ∈ ℝ :  𝐸(𝑓 = 𝑎) = 𝐸(𝑓 ≥ 𝑎) ∩ 𝐸(𝑓 ≤ 𝑎) — измеримо
2. 𝑓  — измерима ⇒ ∀𝛼 ∈ ℝ :  𝛼𝑓  — измерима
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3. 𝑓  — измерима на 𝐸𝑘 ⇒ 𝑓  — измерима на 𝐸 = ⋃ 𝐸𝑘
4. 𝑓  — измерима на 𝐸, 𝐸′ ⊂ 𝐸, 𝐸′ ∈ 𝒶 ⇒ измерима на 𝐸′

5. 𝑓 ≠ 0 на E, измерима ⇒ 1
𝑓  — измерима

6. 𝑓 ≥ 0,  𝛼 > 0 — измерима ⇒ 𝑓𝛼 — измерима

Теорема. Об измеримости пределов и супремумов.
𝑓𝑛 — измеримые функции на 𝑋. Тогда:
1. sup 𝑓𝑛,  inf 𝑓𝑛 — измеримы.
2. lim 𝑓𝑛,  lim 𝑓𝑛 — измеримы.
3. Если ∀𝑥 ∃ lim

𝑛→+∞
(𝑓𝑛(𝑥)) = 𝑓(𝑥), то 𝑓  — измерима.

Доказательство:
1) Пусть 𝑔(𝑥) ≔ sup 𝑓𝑛(𝑥)
Докажем, что

𝑋(𝑔 > 𝑎) = ⋃
𝑛

𝑋(𝑓𝑛 > 𝑎)

Если это верно, то справа стоит счетное объединение измеримых множеств ⇒ оно измеримо

Чтобы это показать, докажем включение в обе стороны.

Покажем, что

𝑋(𝑔 > 𝑎) ⊂ ⋃
𝑛

𝑋(𝑓𝑛 > 𝑎)

Рассмотрим какой-нибудь 𝑥 ∈ 𝑋(𝑔 > 𝑎). По определению множества 𝑋(𝑔 > 𝑎) :  𝑔(𝑥) > 𝑎 ⇒
sup 𝑓𝑛(𝑥) = 𝑔(𝑥) > 𝑎. Тогда по техническому описанию sup :  ∃𝑛 : 𝑓𝑛(𝑥) > 𝑎. Значит 𝑥 лежит в правой
части тоже.

Покажем, что

𝑋(𝑔 > 𝑎) ⊃ ⋃
𝑛

𝑋(𝑓𝑛 > 𝑎)

Рассмотрим какой-нибудь 𝑥 ∈ ⋃𝑛 𝑋(𝑓𝑛 > 𝑎). Это значит, что ∃𝑛 :  𝑥 ∈ 𝑋(𝑓𝑛 > 𝑎).

По определению этого множества 𝑓𝑛(𝑥) > 𝑎 ⇒ 𝑔(𝑥) = sup 𝑓𝑛(𝑥) > 𝑎

TODO: скопировал 2 и 3 пункт с прошлого года, так как не понял, распишите их нормальной

2) Распишем верхни предел по определению (для нижнего все будет аналогчино)
∢ 𝑠𝑛 ≔ sup(𝑓𝑛(𝑥), 𝑓𝑛+1(𝑥), …)
Заметим, что по предыдущему пункту 𝑠𝑛 — измерим (т.к. она sup измеримых)

lim 𝑓𝑛(𝑥) = inf𝑛(𝑠𝑛)
Аналогично lim 𝑓𝑛(𝑥) — измерима, т.к. 𝑠𝑛 измеримы

3) Очевидно: так как если ∃ lim ⇒ lim = lim = lim

Q.E.D.

Следствие. 𝑓  - измеримо ⇒ |𝑓|, 𝑓+, 𝑓− - измеримы

Теорема. Характеризация измеримых функций с помощью ступенчатых

𝑓 : 𝑋 → ℝ, 𝑓 ≥ 0,𝑓  — измеримо. Тогда ∃𝑓𝑛 — ступенчатые функции:
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1. 0 ≤ 𝑓𝑛 ≤ 𝑓
2. ∀𝑥 :  lim

𝑛→+∞
𝑓𝑛(𝑥) = 𝑓(𝑥)

Доказательство:

Выберем 𝑛 ∈ ℕ и нарежем ось «𝑦» сначала на 𝑛 отрезков длины 1, а потом каждый из них на отрезки
длины 1

𝑛 . И введем следующие обозначения:

𝑒(𝑛)
𝑘 ≔ 𝑋(𝑘

𝑛
≤ 𝑓 < 𝑘 + 1

𝑛
),  𝑘 = 0, 1, …, 𝑛2 − 1

𝑒(𝑛)
𝑛2 = 𝑋(𝑓 ≥ 𝑛)

Заметим, что 𝑋 разбилось на 𝑛2 + 1 дизъюнктных кусков: 𝑋 = ⨆𝑘 𝑒(𝑛)
𝑘 .

Замечание: Концептуально функция не обязательно убывающая, мы просто делим на куски и
возможно, что 𝑒(𝑛)

𝑘  будут не непрерывны, как на рисунке.

Построим теперь ступенчатую функцию 𝑔𝑛 :

0 ≤ 𝑔𝑛 ≔ ∑
𝑛2

𝑘=0

𝑘
𝑛

⋅ 𝜒𝑒(𝑛)
𝑘

≤ 𝑓

Левое неравенство очевидно, т.к. каждое из слагаемых не меньше 0
Правое неравенство следует из того, что на 𝑒(𝑛)

𝑘  значение функции 𝑓 ≥ 𝑘
𝑛 , а в сумме мы

рассматриваем функцию, у которой на 𝑒(𝑛)
𝑘  значение в точности равно 𝑘

𝑛 . Неравенство становится
очевидным.

Найдем предельную функцию:

lim
𝑛→∞

𝑔𝑛(𝑥) = 𝑓(𝑥) =

{{
{{
{{
{+∞, если 𝑓(𝑥) = +∞, (т.к. ∀𝑛 :  𝑥 ∈ 𝑒(𝑛)

𝑛2 ⇒ 𝑔𝑛(𝑥) = 𝑛)

𝑓(𝑥), если 𝑓(𝑥) < +∞, (т.к. НСНМ 𝑛 > 𝑓(𝑥) 𝑥 ∈ 𝑒(𝑛)
𝑘 ⇒

(⋆)
|𝑓(𝑥) − 𝑔𝑛(𝑥)| < 1

𝑛)

(⋆) : Т.к. 𝑛 > 𝑓(𝑥), то 𝑘 < 𝑛2, а по определению 𝑒(𝑛)
𝑘  значения на этом множестве 𝑔𝑛 отличаются от 𝑓

не более, чем на 𝑘+1
𝑛 − 𝑘

𝑛 = 1
𝑛 .

Теперь определим 𝑓𝑛 так, чтобы они были монотонными:

𝑓𝑛(𝑥) ≔ max(𝑔1, 𝑔2, …, 𝑔𝑛)
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Очевидно, что 𝑓𝑛 = max(𝑔1, …, 𝑔𝑛), 0 ≤ 𝑓𝑛 ≤ 𝑓𝑛+1 ≤ 𝑓  и они ступенчатые.

Q.E.D.

Todo: сверьте следствия

Следствие 1:

𝑓 : 𝑋 → ℝ — измеримая. Тогда ∃𝑓𝑛 — ступенчатые, что:
1. ∀𝑥 ∀𝑛 :  |𝑓𝑛| ≤ |𝑓|
2. ∀𝑥 :  lim

𝑛→+∞
𝑓𝑛(𝑥) = 𝑓(𝑥)

Доказательство:

Очевидно, что 𝑓+, 𝑓− — измеримы, и при этом 𝑓+, 𝑓− ≥ 0. Тогда по теореме:
1. ∃ℎ𝑛 — ступ. :   ℎ𝑛 ↑,   0 ≤ ℎ𝑛 ≤ 𝑓+,   lim ℎ𝑛 = 𝑓+

2. ∃𝑔𝑛 — ступ. :   𝑔𝑛 ↑,   0 ≤ 𝑔𝑛 ≤ 𝑓−,   lim 𝑔𝑛 = 𝑓−

По свойству ступенчатых функций ℎ𝑛 − 𝑔𝑛 — тоже ступенчатая. И при этом: ℎ𝑛 − 𝑔𝑛 → 𝑓+ − 𝑓− = 𝑓
Тогда ∢ 𝑓𝑛 ≔ ℎ𝑛 − 𝑔𝑛 и докажем что они подходят.

Второе условие выполнено за счет предпоследней строчки Докажем первое условие, по определению
срезок:

∀𝑥 :  𝑓+(𝑥) = 0 или 𝑓−(𝑥) = 0

Поэтому

∀𝑥 ∀𝑛 :  |𝑓𝑛| = |ℎ𝑛(𝑥) − 𝑔𝑛(𝑥)| = ℎ𝑛(𝑥) или 𝑔𝑛(𝑥)

И при этом

ℎ𝑛(𝑥) ≤ 𝑓+(𝑥) ≤ |𝑓|  и 𝑔𝑛(𝑥) ≤ 𝑓−(𝑥) ≤ |𝑓|

Получается, что |𝑓𝑛| < |𝑓| — ровно то, что надо

Q.E.D.

Следствие 2:
𝑓, 𝑔 — измеримы. Тогда 𝑓𝑔 — тоже измеримо

Доказательство:

Рассмотрим 𝑓𝑛 → 𝑓,  𝑔𝑛 → 𝑔 — ступенчатые из нашей теоремы. При этом 𝑓𝑛,  𝑔𝑛 — конечные (т.к.
сутпенчатые). Тогда по свойству поточечной сходимости:

𝑓𝑛𝑔𝑛 → 𝑓𝑔

(будем считать, что 0 ⋅ ±∞ = 0)

Q.E.D.

Следствие 3:
𝑓, 𝑔 — измеримы. Считаем, что ∄𝑥 𝑓(𝑥) = ±∞,  𝑔(𝑥) = ∓∞. Тогда 𝑓 + 𝑔 — измеримо

Доказательство:

∃𝑓𝑛,  𝑔𝑛 — ступенчатые из нашей теоремы. Тогда по свойству поточечной сходимости:

𝑓𝑛 + 𝑔𝑛 → 𝑓 + 𝑔

Q.E.D.
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4. Информация о курсе
Поток — y2024.

Группы M3238-M3239.

Преподаватель — Кохась Константин Петрович.

Уже по традиции здесь будут мои пописульки:

09.01.25 — Старт Кохася. Пока не убивает

09.08.25 — Еще не убивает
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